Mechanism of catabolite repression of tryptophanase synthesis in Escherichia coli.
نویسندگان
چکیده
Repression of tryptophanase (tryptophan indole-lyase) by glucose and its non-metabolizable analogue methyl alpha-glucoside has been studied employing a series of isogenic strains of Escherichia coli lacking cyclic AMP phosphodiesterase and altered for two of the proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), Enzyme I and Enzyme IIAGlc. Basal activity of tryptophanase was depressed mildly by inclusion of glucose in the growth medium, but inducible tryptophanase synthesis was subject to strong glucose repression in the parental strain, which exhibited normal PTS enzyme activities. Methyl alpha-glucoside was without effect in this strain. Loss of Enzyme I decreased sensitivity to repression by glucose but enhanced sensitivity to repression by methyl alpha-glucoside. Loss of Enzyme IIAGlc activity largely abolished repression by methyl alpha-glucoside but had a less severe effect on glucose repression. The repressive effects of both sugars were fully reversed by inclusion of cyclic AMP in the growth medium. Tryptophan uptake under the same conditions was inhibited weakly by glucose and more strongly by methyl alpha-glucoside in the parental strain. Inhibition by both sugars was alleviated by partial loss of Enzyme I. Inhibition by methyl alpha-glucoside appeared to be largely due to energy competition and was not responsible for repression of tryptophanase synthesis. Measurement of net production of cyclic AMP as well as intracellular concentrations of cyclic AMP revealed a good correlation with intensity of repression. The results suggest that while basal tryptophanase synthesis is relatively insensitive to catabolite repression, inducible synthesis is subject to strong repression by two distinct mechanisms, one dependent on enzyme IIAGlc of the PTS and the other independent of this protein. Both mechanisms are attributable to depressed rates of cyclic AMP synthesis. No evidence for a cyclic-AMP-independent mechanism of catabolite repression was obtained.
منابع مشابه
Unstable mutations that relieve catabolite repression of tryptophanase synthesis by Escherichia coli.
From strains of Escherichia coli that carry deletions of the trp region, five different mutants were isolated that were capable of synthesizing tryptophanase at unusually high rates in conditions of severe catabolite repression. Notwithstanding the comparative insensitivity to catabolite repression, the rates of tryptophanase synthesis in the mutants were greatly diminished by the introduction ...
متن کاملRepression of Tryptophanase Synthesis in Escherichia Coli.
Beggs, William H. (University of Cincinnati, Cincinnati, Ohio), and Herman C. Lichstein. Repression of tryptophanase synthesis in Escherichia coli. J. Bacteriol. 89:996-1004. 1965.-The nature of the glucose effect on tryptophanase in Escherichia coli (Crookes) was investigated to test the catabolite-repression hypothesis. Under static conditions of growth in the presence of 0.005 m glucose, try...
متن کاملCatabolite repression in Escherichia coli mutants lacking cyclic AMP receptor protein.
Pleiotropic carbohydrate-positive pseudorevertants have been isolated from a specific class of rho-crp double mutants of Escherichia coli carrying both defective transcription termination protein, rho, and cyclic AMP receptor protein. The modulation of catabolite repression of beta-galactosidase, amylomaltase, and tryptophanase has been studied in the pseudorevertants. It has been found that th...
متن کاملEvidence for transcription antitermination control of tryptophanase operon expression in Escherichia coli K-12.
Tryptophanase, encoded by the gene tnaA, is a catabolic enzyme distinct from the enzymes of tryptophan biosynthesis. Tryptophanase synthesis is induced by tryptophan and is subject to catabolite repression. We studied the mechanism of tna operon induction. Mutants with altered rho factor were partially constitutive for tna expression, implicating rho-dependent transcription termination in the c...
متن کاملTryptophanase-tryptophan synthetase systems in Escherichia coli. III. Requirements for enzyne synthesis.
Freundlich, Martin (University of Minnesota, Minneapolis) and Herman C. Lichstein. Tryptophanase-tryptophan synthetase systems in Escherichia coli. III. Requirements for enzyme synthesis. J. Bacteriol. 84:996-1006. 1962.-The requirements for the formation of tryptophanase and tryptophan synthetase in Escherichia coli during repression release were studied. The kinetics of the formation of trypt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 140 ( Pt 8) شماره
صفحات -
تاریخ انتشار 1994